

h.ni 512

BUILT FOR PERFORMANCE INDUSTRY-LEADING LOW-LIGHT SNR, BALANCING SPEED AND FIELD OF VIEW

h.N

A NEW STANDARD FOR LOW LIGHT IMAGING NÜVÜ™ REINVENTS THE ELECTRONICS BEHIND THE EMCCD DETECTOR

OUTSTANDING SNR THANKS TO:

Stabilized on-chip thermoelectric cooling down to -85 \pm 0.01 °C by air for minimal background signal

Patented electronics decreasing inherent EMCCD camera noise for true photon counting

Lowest background signal and highest electron-multiplying gain, up to 5000, in inverted mode of operation (IMO) for optimal results in ultra low-light conditions

ULTIMATE SENSITIVITY enabling highly efficient low-flux imaging, hence faster acquisitions, with frame rates exceeding 63 fps in full frame at 20 MHz readout rate

SUPERIOR IMAGE QUALITY thanks to greater charge transfer efficiency

NO NOISE-FILTERING ALGORITHMS the amount of noise generated is simply lower, eliminating the risk of removing genuine photoelectrons

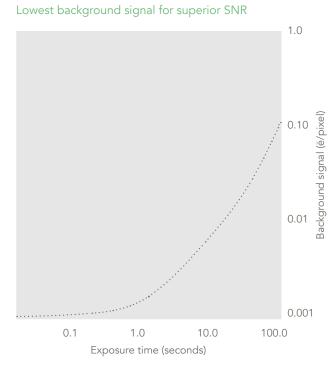


Figure 1 ____

h · N 512 dark frames mean signal as a function of exposure Data measured at 10MHz with an EM gain of 1000 at -85°C.

h ni 512 Specification sheet

SIMPLE INTEGRATION INTO A WIDE VARIETY OF SOFTWARE SYSTEMS

Nüvü Camēras offers the highest standard of EMCCD technology in a compact thermoelectrically cooled camera. The technology at the heart of the HNü was originally designed for astronomy, where the need for state-of-theart instruments drives innovation. Now optimized and extended to a broad range of applications, the user- friendly HNü provides many advantages to efficiently bridge the gaps between purchase, setup, discoveries, and publications.

- NüPixel control, acquisition and analysis software
- Software development kit (SDK) for customizable programming
- Various drivers available for commercial software
- > Worldwide professional customer support
- Consultation services are available on demand.

h ni 512

CHARACTERISTICS	SPECIFICATIONS
Digitization	16 bits
Electron-multiplying gain	1 - 5000
Selectable stabilized cooling temperature at maximum full frame readout	Down to -90°C via liquid cooling ¹
of 20 MHz	Down to -85°C via air cooling
On-chip temperature stabilization	± 0,01°C
Quantum efficiency	> 90% at 600 nm (see Figure 3)
EM register pixel well depth ²	800 kē
Spectral range	250 - 1100 nm
Triggering	Internal or external Selectable signal polarity
Exposing time resolution	4 ns
Exposing time range ³	25 ns - days
Timestamp resolution	4 ns

Table 1 HNü general characteristics and specifications

FF	ΔΤ	UR	FS
	~	0.0	

BENEFITS

EM gain range of 1 – 5000	Lowest effective readout noise Unmatched single photon detection capabilities	
Lowest clock-induced charges levels (CIC)	Highest SNR as a result of lowering the CIC, the dominant noise source of EMCCDs	
Patented technology optimized for true photon counting	Linear and photon counting modes are available in EM operation	
Highest horizontal charge transfer efficiency	Clearer images No pixel leaking	
Ultimate cooling performance	Negligible dark noise Superior charge transfer efficiency	
Highest quantum efficiency	Best sensitivity available thanks to back-illuminated grade 1 EMCCD detector (see Figure 3)	
Selectable output	Fast and easy switching between conventional CCD and EMCCD operations	
Time stamping	High-precision time-labelling of every acquisition GPS input for absolute time tagging (optional)	
mROI	Select multiple customizable regions of interest on the detector to increase acquisition rates	
Cropped-sensor mode	Faster acquisition rates for a region of interest by masking part of the EMCCD detector ⁴ Greater acquisition versatility using customizable size and position for the cropped region of interest	

Table 2 HNü features and benefits

h ni 512 Specification sheet

FASTER FRAME RATES FOR SENSITIVE IMAGING

Available readout rates through the EM channel are 1 MHz, 5 MHz, 10 MHz, and 20 MHz. The conventional channel provides readout rates of 0.1 MHz, 1 MHz, and 3 MHz.

BINNING ⁷	REGION OF INTEREST

	512 x 512	256 x 256	128 x 128	64 x 64	32 x 32
1 x 1	63	124	240	448	789
1 x 2	123	237	443	783	1267
1 x 4	233	436	770	1250	1814
1 x 8	421	747	1216	1776	2304
1 x 16	704	1159	1703	1820	2110
1 x 32	1051	1574	2096	2512	2785
Cropp	Cropped-sensor mode 234 687 1483 2188				2188

Table 3 HNü 512 frame rates for different binning values and regions of interest

Frame rates are measured at 20 MHz in EM mode. Other readout speeds and frame rates are also available, as are different EMCCD detector sizes.

TYPICAL CHARACTERISTICS⁸

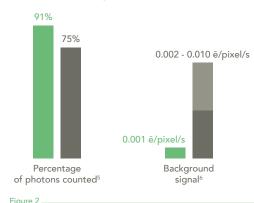
HNÜ 512

Maximum available EM gain (linear or PC mode):		5000	
Readout noise through: EM channel with electron multiplication Conventional chanel		< 0.1ē @ 20 MHz	
		3ē @ 100 kHz	
Vertical clock speed		0.3 – 5 μs 0.3 – 5 μs	
Dark current ^{1,8,9} (All operating modes)		0.0002 ē/pixel/s	
Clock-induced charges ⁶		0.001 ē/pixel/frame	
Charge transfer efficiency ¹⁰		> 0.999993	
Single photon detection probability (EM gain = 5000)		> 91%	
Imaging area		512 × 512 pixels 16 μm × 16 μm pixel area 8.19 mm × 8.19 mm effective area	

Table 4 HNü 512 specific characteristics

WHEN EVERY PHOTON COUNTS

The EMCCD technology is perfectly suited for lowlight applications requiring minimal background noise due to its negligible effective read-out noise enabled through high EM gain. In linear mode of operation, the EM gain cannot be precisely determined on a per- pixel basis because of its stochastic nature. It however generates an excess noise factor (ENF) that, for high EM gains, leads to a degraded SNR. In fact, it affects the SNR the same way halving the quantum efficiency would. With photon counting (PC) mode of operation, Nüvü Camēras efficiently suppresses the ENF, thus allowing single photon sensitivity.


Nüvü[™]'s ultra-sensitive cameras successfully operate in PC mode thanks to their high EM gains and minimal background noise. Although attaining large EM gains is simple, the electron-multiplying process entails more clock-induced charges (CIC), a dominant EMCCD noise source. The innovative electronics driving HNü cameras virtually eliminates CIC and lowers the total background signal while providing the highest gain on the market. The results: better data in low lighting conditions.

PHOTON COUNTING PERFORMANCES COMPARISON

- HNü 512 (All Nüvü Camēras specifications measured in IMO.)
- Best achievable performance with other EMCCD cameras

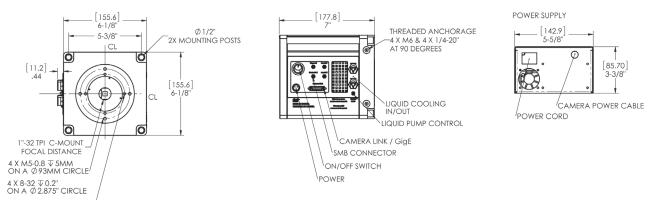
(Other manufacturers do not specify the mode of operation – IMO or NIMO – used to measure one specific characteristic. These are two mutually exclusive EMCCD operation modes whose benefits cannot be combined.)

At least 15% more genuine photons counted

h N 512 benefits for photon counting

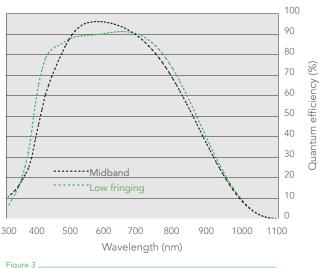
QUALITY PRIORITY

All parts are treated in compliance with high vacuum requirements, including all metal sealed in a Class 10,000 cleanroom to ensure the longest vacuum lifetime without maintenance. Nüvü Camēras uses at least λ /10 quality windows, essential for optimal image quality.


COMPUTER REQUIREMENTS:

- Communication interface: PCIe Camera Link (min. 4X) or GigE Vision (Gigabit Ethernet)
- > Operating system: Windows (XP, 7 & 10), Linux

CAMERA ENVIRONMENT:


- › Operating temperature: 0°C to 30°C
- Humidity: < 90 % (non-condensing)</p>
- > Power Input: 100 240 V, 50 60 Hz, max. 3 A

Technical drawings

- 1 Below -95°C, charge transfer efficiency degrades while improvement on the dark current decreases slowly.
- 2 As per the EMCCD detector manufacturer's datasheet. Other configurations may exist.
- 3 Minimum 25 ns exposure time available in controlled illumination conditions due to pixels clearing prior to readout.
- 4 Optical mask not included.
- 5 Detected events with signal 5 times greater than readout noise in photon counting mode. Measured data.
- 6 Expected signal level at an EM gain of 1000 at -85°C and maximum frame rate in continuous exposure at 10 MHz.
- 7 Horizontal binning does not influence maximum acquisition rates in EM mode at 10 and 20 MHz pixel rates.
- 8 These numbers may slightly vary depending on the EMCCD detector.
- 9 Dark current measured at -85°C. The HNü can also operate down to -90°C with liquid cooling.
- 10 Mean horizontal charge transfer efficiency measured with an EM gain of 1000 at $\rm -85^\circ C$ and 10 MHz readout rate.

Typical quantum efficiency

Typical spectral response as a function of wavelength, as measured by the EMCCD detector manufacturer

Contact us at: info@nuvucameras.com +1 514 733 8666 Montreal (Quebec) CANADA

HNü and NüPixel are the intellectual property of Nüvü Camēras. All other brands are properties of their respective owners. Incremental changes are made to the products and specifications are subject to modification without prior notice. HNü 512 Specification Sheet 2.0 © Nüvü Camēras, 2015

www.nuvucameras.com